1. For \(f(x, y) = (x^2 + y^2)e^{-(x^2 + y^2)} = (x^2 + y^2)\exp(-x^2 - y^2) \) evaluate the following:

\[
\lim_{(x, y) \to (0, 0)} f(x, y) = \quad \text{________________________}
\]

\[
\frac{\partial f}{\partial x} = \quad \text{________________________}
\]

Sketch the surface \(z = f(x, y) \)

2. Given \(f(x, y, z) = 2x^4y + 5xyz^3 + 4xy^2z^2 \) and \(g(x, y, z) = x^2 + y^2 + z^2 \), evaluate the following:

\[
\left. \frac{\partial f}{\partial y} \right|_{x, z} = \quad \text{________________________}
\]

\[
\left. \frac{\partial f}{\partial y} \right|_{x, g} = \quad \text{________________________}
\]
3. For \(f(x, y) = e^{-x^2(y^2 + 1)} = \exp(-x^2)(y^2 + 1) \), find all critical points and determine if each critical point is a maxima, minima or saddle point.

4. Given \(f(x, y) = x - \sqrt{3}y \) find the position(s) and the value of the maximum of \(f(x, y) \) on the circle of radius \(a \) centered at the origin.

5. Calculate the volume of the region of three dimensional space which is the intersection of the interior of the sphere defined by \(\rho \leq a \) and the half space defined by \(z \geq \frac{\sqrt{3}a}{2} \).
6. Evaluate the triple integral \[\iiint_D x^2z \, dV \], where \(D \) is the region of three dimensional space which is in the interior of the sphere of radius \(a \) with center at the origin and the half space defined by \(z \geq 0 \).

7. Calculate the centroid of a uniform solid hemisphere of radius \(a \) if the circular base is centered at the origin and is in the \(xy \) plane.
8. Consider the closed path that travels along the x axis from $(0, 0)$ to $(a, 0)$, then in the first quadrant along the circle centered at the origin from $(a, 0)$ to $(0, a)$ and finally along the y axis from $(0, a)$ back to $(0, 0)$. For this path and the vector field \(\vec{F} = x^2 y \hat{i} + 2xy^2 \hat{j} \) calculate both the counterclockwise circulation $\oint_C \vec{F} \cdot \hat{T} \, ds$ and the outward flux $\int_C \vec{F} \cdot \hat{n} \, ds$.

\[
\oint_C \vec{F} \cdot \hat{T} \, ds = \quad \text{________________________}
\]

\[
\int_C \vec{F} \cdot \hat{n} \, ds = \quad \text{________________________}
\]

9. For constant k indicate for which of the following two vector fields the flow integral $\int_C \vec{F} \cdot \hat{T} \, ds$ from $(0, 0, 0)$ to (a, b, c) is independent of the path C chosen and then for the conservative field calculate the value of $\int_C \vec{F} \cdot \hat{T} \, ds$.

a) \(\vec{F}_1 = kyz^2 \hat{i} + kxz^2 \hat{j} + kxyz \hat{k} = < kyz^2, kxz^2, kxyz > \)

b) \(\vec{F}_2 = kyz^2 \hat{i} + kxz^2 \hat{j} + 2kxyz \hat{k} = < kyz^2, kxz^2, 2kxyz > \)
10. Calculate the surface integral \(\int \int_{S} \vec{F} \cdot \hat{n} \, dS \) over the total surface of the volume enclosed by the intersection of a sphere centered at the origin with a radius of \(a \) and the half space \(z \geq 0 \) for the vector field \(\vec{F} = x^2 \hat{i} + 4yz \hat{j} - z^2 \hat{k} \).

11. Solve the first order ODE \(\frac{dy}{dx} + xy = x \), subject to \(y(0) = -2 \).

12. Solve the following second order ODE subject to the initial conditions \(y(0) = -8, \ y'(0) = 0 \) :
\[
\frac{d^2y}{dt^2} + 4 \frac{dy}{dt} + 8y = 100 \sin(2t) .
\]